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Abstract 
 
A new model is proposed to predict the thermal conductivities of laminated composites, where the Eshelby method 

modified with Mori-Tanaka’s mean field approach is employed to consider the interaction effect. Based on the equiva-
lency of composites with penny-shaped fillers and composites with layers of components, each lamina is considered as 
a penny-shaped filler and its thermal conductivities are computed by modified Eshelby method. The laminated com-
posites are then simulated as the matrix and penny-shaped fillers of different thermal conductivities. By comparing the 
results of the laminated composites predicted by the present model and conventional approach combined with the po-
tential theory and electrical analogy, the applicability of the present model to predict the thermal conductivities of the 
laminated composites is validated. 
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1. Introduction 

The thermal conductivity of composite materials is 
of importance in many applications with high in-use 
temperatures. A number of analytical models for pre-
dicting the thermal conductivity of the composite 
materials have been proposed [1-15], whose deriva-
tions are based on the physical structures and con-
stituent thermal conductivities of the composite mate-
rials. Fillers in the composites are mainly divided into 
two groups such as continuous and discontinuous 
shapes, based on which the models for the prediction 
of the thermal conductivity are quite different. 

The modified Eshelby method (MEM) [16, 17] 
considering the interactions between the fillers has the 
advantage of the applicability to predict the thermal 
conductivity of the composites with various shapes of 
discontinuous fillers, so it has been extensively used 

for short fiber or particulate composites [1, 2, 5, 7]. 
Hatta et al. [5] predicted the thermal conductivities of 
composite materials with various shapes of fillers 
such as a particle, short fiber, flake, and whisker using 
MEM and the predicted results were compared with 
the measured results. On the other hand, laminated 
composites are representative composites with the 
continuous fillers, whose thermal conductivities have 
not been predicted by MEM. The most conventional 
approach for predicting their thermal conductivity is 
as follows [6, 8, 15]. The thermal conductivities of a 
unidirectional lamina in the longitudinal (filler) and 
its perpendicular directions are first computed. The 
longitudinal thermal conductivity Lk  is obtained 
from the rule of mixtures, while the transverse ther-
mal conductivity Tk  is derived from an effective-
medium approach [18] analogous to the self-
consistent method. The thermal conductivities of the 
laminated composites are then predicted by using an 
electrical analogy [6, 8, 10, 15]. 

Many researches have been made on penny-shaped 
filler problems using the Eshelby method since 
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Eshelby derived the Eshelby tensor through imagi-
nary cut and welding processes. Some of them are 
related to the derivation of the Eshelby tensor [19, 20], 
while others are focused on the prediction of elastic 
moduli [21-26] and fracture analysis [27-32] of mate-
rials with penny-shaped cracks by using Eshelby’s 
equivalent inclusion method. Although a wide range 
of analytical studies have been done for composites 
with penny-shaped fillers, a thermal problem for these 
composites has not been examined by MEM [16, 17]. 
In the present study, the analytical model for predict-
ing the thermal conductivities of the laminated com-
posites is proposed using the penny-shaped fillers, 
where the Eshelby method [16] with Mori-Tanaka’s 
mean field approach [17] is employed for considering 
the interaction effect between the fillers. The closed-
form solutions of the thermal conductivities by the 
present model are compared with the results for the 
composites with layers of the components by the 
series and parallel models, through which their results 
are proved to be the same for a special case of the 
penny-shaped filler. Based on this structural equiva-
lency, the laminated composites can be simulated as a 
matrix involving the penny-shaped fillers of different 
thermal conductivities, which are then converted into 
the multi-phase composites. By computing the ther-
mal conductivities of unidirectional laminae with 
misoriented fillers with MEM and then embedding 
them into the matrix, the thermal conductivities of the 
laminated composites are predicted to be compared 
and discussed with the results computed by the con-
ventional approach [6, 8, 15]. 
 

2. Analytical models 

2.1 Modified Eshelby model for composites with 
misaligned fillers 

Let’s consider the infinite domain of a composite 
(D) in which fillers ( )Ω  of any shape are randomly 
distributed in the 1 3x x−  plane with an orientation 
angle θ  relative to the 3x  axis of the global coor-
dinate system, as shown in Fig. 1(a). The local coor-
dinate system is set to the axes of the filler. Fig. 1(a) 
is converted into Fig. 1(b) by using Eshelby’s equiva-
lent inclusion method. The matrix and filler are as-
sumed to be isotropic, whose thermal conductivities 
are denoted by mk  and fk , respectively. Subscripts 
m and f represent the matrix and filler, respectively, 
and bold-faced letters denote a vector or matrix. The 
prime and the unprimed indicate the quantities re- 

 
(a) 

 
(b) 

 
Fig. 1. Analytical model for computing heat fluxes and tem-
perature gradient vector in both filler and matrix: (a) original 
problem, which is converted to (b) Eshelby’s equivalent 
inclusion problem. Fillers have an orientation angle of θ. 
 
ferred to the local and the global coordinate system, 
respectively. 

The composite is subjected to a constant heat flux 
( oq ) along the global coordinate system. By applying 
MEM [16, 17] to the composite, heat fluxes in the 
matrix and filler domain, mq  and fq , are expressed 
as 

 
( ) ( )*o o

f f m= − + + = − + + −q K Z Z Z K Z Z Z Z , (1) 

( )o
m m= − +q K Z Z , (2) 

 
where K  is the thermal conductivity matrix, Z  is 
the average of a disturbed temperature gradient vector 
in the matrix, Z  is the disturbed temperature-
gradient vector in the filler, *Z  is the eigentempera-
ture-gradient vector of the equivalent inclusion prob-
lem. Since oZ  is the constant temperature gradient 
vector in the matrix without any filler generated by 
the heat flux oq , their relationship is given by 

oq

oq

( )mD KΩ−

( )*
m , ZKΩ

oq

oq

( )mD KΩ−

( )fKΩ
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o o
m= −q K Z . (3) 

 
Since the integration of the disturbed heat flux over 
the entire composite domain is reduced to zero, Z  is 
obtained from Eqs. (1)-3) as 

 

( )* 0f+ − =Z Z Z , (4) 

 
where f  is the filler volume fraction. From Eqs. (1), 
(2), and (4), the eigentemperature-gradient vector *Z  
is derived as 
 

( ) ( ) ( )* *1 o
f m m m ff f⎡ ⎤− − + + = −⎣ ⎦K K Z Z K Z K K Z  (5) 

 
Since 'Z  is related to *'Z  through Eshelby’s tensor 
S  as 

 
*' '=Z SZ . (6) 

 
From Eqs. (5) and (6) and the transformation matrix 
X, *'Z  is represented as 

 
( ) ( ){ }
( )

*1 'f m m

o
m f

f f− ⎡ − + ⎤ +⎣ ⎦

= −

K K XS X K X Z

K K Z
, (7) 

 
and further simplified as  

 
( )*' o

m f= −Z T K K Z , (8) 

 
where T  is defined as 

 

( ) ( ){ } 1
1f m mf f

−
= − ⎡ − + ⎤ +⎣ ⎦T K K XS X K X . (9) 

 
The total temperature gradient vectors in the matrix 
and filler, mZ  and fZ , are defined as 

 
o

m = +Z Z Z , (10) 
o

f = + +Z Z Z Z . (11) 

 
Their volume average in the entire composite is equal 
to the temperature gradient vector in the composite 

cZ , which is given by 
 

( ) *1 o
c m ff f f= − + = +Z Z Z Z Z . (12) 

 

By replacing *Z  with *'Z  in Eq. (12), cZ  takes 
the form 

 
( ) o

c m ff⎡ ⎤= + −⎣ ⎦Z I XT K K Z , (13) 

 
where I  is the 3× 3 identity matrix. Since the com-
posite is subject to the heat flux oq , the relationship 
between the heat flux, temperature gradient, and 
thermal conductivity of the composite is expressed as 

 
o

c c c= − =q K Z q . (14) 
 
Finally, the thermal conductivity of the composite 

cK  in the global coordinate system is determined by 
Eqs. (3), (13), and (14), which is reduced to 

 

( ) 1
c m m ff

−
⎡ ⎤= + −⎣ ⎦K K I XT K K . (15) 

 
2.2 Modified Eshelby model for thermal conductivi-

ties of laminated composites 

A laminated composite is composed of a stack of 
N layers, and their thermal conductivities are different 
from each other and computed from Eq. (15) by con-
sidering the layer as a composite with misoriented 
continuous fillers. Each layer can be simulated as a 
penny-shaped filler, which will be explained later. To 
compute the thermal conductivities of the laminated 
composite, all layers are considered to be penny-
shaped fillers and embedded into the matrix which is 
equivalent to the matrix material of each layer, as 
shown in Fig. 2. The problem is then converted into a 
multi-phase composite.  
The procedures hereafter are the same as those men-
tioned in section 2.1. By using Eshelby’s equivalent 
inclusion method [16] with Mori-Tanaka’s mean field 
approach [17], the heat fluxes in the matrix and the k-
th layer are expressed as 

( )
( )*

k k o k
f f

o k k
m

= − + +

= − + + −

q K Z Z Z

K Z Z Z Z
, (16) 

where the superscript k means the k-th layer. By 
analogy with Eq. (4), Z  is given by 

 

( )*

1

0
N

k k
k

k

f
=

+ − =∑Z Z Z , (17) 
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(a) 

 
(b) 

 
(c) 

 
Fig. 2. An analytical model for composites with multi-phase 
fillers of penny shape: (a) original problem, which is con-
verted to (b) Eshelby’s equivalent inclusion problem, and (c) 
the shape of a penny. 
 
where kf  represents the filler volume fraction of the 
k-th layer. f  is the sum of kf  and equal to 1. By 
inserting Eq. (17) into Eq. (16), the relationship be-
tween eigen-temperature gradient vectors is derived 
as 

 

( ) ( ){ }
( ) ( ) ( )

*

*

1

1k k
f m k k m

N
k i k o

m f i m f
i
i k

f f

f
=
≠

⎡ ⎤− − + +⎣ ⎦

+ − − = −∑

K K S I K Z

K K S I Z K K Z
, (18) 

 
where I  denotes the identity matrix and S  is 
Eshelby tensor for the penny shape. The relation is 
simply restated as 
 

( )
( )

*1 *2 *
1 2

* 1 *
1

k
k k kk

N N o
kN kk N

−
−

+ ⋅ ⋅ ⋅ +

+ ⋅ ⋅ ⋅ + + =

A Z A Z A Z

A Z A Z D Z
, (19) 

where kkA , kiA , and kD  are defined by the fol-
lowing equations: 

 

( ) ( ){ }1k
kk f m k k mf f⎡ ⎤= − − + +⎣ ⎦A K K S I K  (20) 

( ) ( )( )k i
ki i m fi k f≠ = − −A K K S I  (21) 

( )k
fmk KKD −= . (22) 

 
By extending Eq. (19) to all fillers, all eigentempera-
ture gradient vectors can be expressed in the parti-
tioned matrix form as 
 

o

N

1

N*

1*

NN1N

N111

.

.
.
.

...
.....
.....

...

Z

D

D

Z

Z
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⎥
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⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

, (23) 

 
which is further reduced into a simplified form as 
follows: 

 
o* DZAZ = . (24) 

 
The eigentemperature gradient vector of each layer is 
determined by the equation 

 
oo1* FZDZAZ == − . (25) 

 
By using Eq. (12), the temperature gradient vector 

cZ  in the composite is expressed by 
 

( ) o
N

1k
kk

ok*
f

N

1k
kmc fff1 ZFZZZZ ∑∑

==

+=+−= . (26) 

 
The thermal conductivities of the laminated compos-
ite of N layers can be finally given by 

 
1

k

N

1k
kmc fI

−

=
⎥
⎦

⎤
⎢
⎣

⎡
+= ∑ FKK . (27) 

 
2.3 Conventional approach for thermal conductivi-

ties of laminated composites 

It is well known that the thermal conductivity of a 
unidirectional lamina parallel to the filler direction, 

Lk , is obtained from the rule of mixtures. Many at-
tempts, however, have been made to derive the ther-
mal conductivity of the lamina perpendicular to the 

2a
1a

3a

( )mD KΩ−

( )k*
m , ZKΩ

oq

oq

oq

oq

( )mD KΩ−

( )k
fKΩ
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filler direction, Tk , and their basic concepts are clas-
sified into the potential theory approach and the elec-
trical resistance analogy [6]. Rolfes and Hammer-
schmidt [6] concluded that the self-consistent formula 
based on the potential theory approach gives the most 
realistic result. These conductivities for the lamina are 
expressed as 

 
( ) fmL fkkf1k +−= , (28) 

( ) ( )
( ) ( ) m

fm

fm
T k

kf1kf1

kf1kf1
k

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−++

++−
= , (29) 

 
where mk , fk , and f  denote the thermal conduc-
tivities of the matrix and filler and the filler volume 
fraction, respectively. The global thermal conductivi-
ties of the lamina with filler orientation angle iθ  
with respect to 3x  are then derived as 
 

i
2

Ti
2

L1 cosksinkk θθ += , (30) 

i
2

Ti
2

L3 sinkcoskk θθ += . (31) 
 
The global thermal conductivity of the lamina in the 
thickness direction is the same as Eq. (29). Finally, 
the global thermal conductivities of the laminated 
composite along the global coordinate system, 11K , 

22K , 33K , are computed by using an electrical anal-
ogy, which are represented as  
 

hkhK
n

1i
i3i33 ∑

=

= , (32) 

hkhK
n

1i
i1i11 ∑

=

= , (33) 

∑
=

=
n

1i ti

i
22 k

hhK , (34) 

 
where h , ih , and subscript i represent the total 
thickness of the laminated composite, thickness of the 
i-th lamina, and the i-th lamina, respectively. 
 

3. Results and discussion 

3.1 Thermal conductivities of composites with penny- 
shaped fillers 

Let’s consider a composite with penny-shaped fill-
ers whose axes coincide with the global coordinate 
system, as shown in Fig. 2. The thermal conductivi-

ties of the matrix and filler are denoted by mk  and 
fk , respectively. Since all fillers are aligned with the 

global coordinate system, the thermal conductivities 
of the composite with misoriented fillers expressed as 
Eq. (15) in section 2.1 can be further simplified by 
excluding the orientation effect of the fillers. The 
transformation matrix X is reduced to the identity 
matrix, so the matrix T is further simplified. The re-
sulting thermal conductivities of the composite are 
given by 

 
( )[ ] 1

fmmc f −−+= KKTIKK , (35) 

where ( ) ( )[ ]{ } 1
mmf ff1 −++−−= KSKKT . (36) 

The thermal conductivities in 1x  and 3x  directions 
are the same and easily computed because all matri-
ces in Eqs. (35) and (36) are diagonal. The thermal 
conductivity in these directions, Lk , can be obtained 
from Eq. (35) as  
 

( )fm33

m
L kkTf1

kk
−+

= . (37) 

 
The 33 component of the matrix T is derived from Eq. 
(36) and as follows: 

 

( ) ( )[ ] m33mf
33 kfSf1kk

1T
++−−

= , (38) 

 
where 33S  represents the 33 components of the 
Eshelby tensor for the penny-shaped filler. By insert-
ing Eq. (38) into Eq. (37), Lk  is written as 
 

( )
( ) ( ) m

mmf33

mf
L k

kkkSf1

kkf
1k

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−−

−
+= . (39) 

 
Eshelby tensors of various filler shapes for the heat 
conduction problem are summarized in the literature1 
and 33S  for the penny shape shown in Fig. 2 (c) is 
given by 
 

3

2
33 a

a
4

S π= . (40) 

 
As a limiting case of the penny shape, let’s consider 

32 aa  to be 0, which means that its thickness is 
negligible compared with its diameter. Then, 33S  is 
equal to 0. Therefore, the thermal conductivity of the 
composite is finally represented as 



2486  J.-K. Lee / Journal of Mechanical Science and Technology 22 (2008) 2481~2488 
 

( ) fmL fkkf1k +−= , (41) 

 
which is equivalent to the result of the composite with 
layers of the components by the parallel model. 

Following the same procedures mentioned in the 
above, the thermal conductivity in 2x  direction, Tk , 
is represented as 

 
( )

( )( ) m
m22mf

mf
T k

kSkkf1

kkf
1k

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−−

−
+= , (42) 

 
where the Eshelby tensor for the penny shape is 

3222 a2a1S π−= . As 32 aa  goes to 0, 22S  ap-
proaches to 1. Therefore, the thermal conductivity in 
this direction gives rise to 
 

( ) fm

fm
T kf1fk

kk
k

−+
= , (43) 

 
which is equivalent to the result of the composites 
with layers of the components by the series model. It 
is obvious from Eqs. (41) and (43) that the composite 
with penny-shaped fillers of 0aa 32 =  simulates 
exactly layers of the components aligned either per-
pendicular or parallel to the heat flow like the lami-
nated composite, so a lamina can be treated as a 
penny-shaped filler. 
 
3.2 Thermal conductivity of laminated composites 

Since MEM applied to the composites with the 
penny-shaped fillers can simulate exactly the lami-
nated structures, it can be further extended to predict 
the thermal conductivities of the laminated compos-
ites using the results of multi-phase composites 
shown in section 2.2. A nonsymmetric laminated 
composite with five laminae is selected for compari-
son, whose filler orientation angles are 0, 10, 20, 30, 
and 40 degrees. Its schematic representation for lami-
nated composite with three laminae is shown in Fig. 3. 
All laminae are assumed to be identical in thickness 
and also in filler volume fraction. Each lamina has 
different thermal conductivity and it is computed 
from Eq. (15) shown in section 2.1. The laminae with 
homogenized thermal conductivities are considered as 
the penny-shaped fillers and again embedded into the 
matrix material, as shown in Fig. 2. By using MEM 
[16, 17] shown in section 2.2, the thermal conductiv- 

 
 
Fig. 3. Schematic representation of a laminated composite 
with three laminae with different orientation angles of fillers. 
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Fig. 4. Comparison of thermal conductivities of laminated 
composite predicted by the present model and conventional 
approach as a function of filler volume fraction, where ther-
mal conductivity ratio mf kk  is 10. 

 
ity of the laminated composite is computed. The re-
sults of 11K , 22K , and 33K  predicted by the pre-
sent model are compared with those by the conven-
tional approach [6, 8, 15] with the potential theory 
and electrical analogy and shown in Fig. 4, where the 
filler volume fraction means the filler volume fraction 
of the lamina. The results are plotted only for a ther-
mal conductivity ratio mf kk  of 10 because the 
results for different conductivity ratios by the two 
methods are the same. It is shown from Fig. 4 that 
both results are exactly the same for various filler 
volume fractions and thermal conductivity ratios. It 
can be concluded that the present model can be ap-
plied to predict the thermal conductivities of the 
laminated composites. 
 

4. Conclusions 

The modified Eshelby method has been applied to 
analyze the thermal conductivities of the composite 
with penny-shaped fillers and its results for the penny 

1x
2x

3x
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shape of the negligible thickness are shown to be 
exactly the same as the results by the series and paral-
lel models for composites with layers of the compo-
nents. These results are extended to predict the ther-
mal conductivities of the laminated composites. The 
thermal conductivities of laminae are computed and 
they are replaced by the penny-shaped fillers. The 
laminated composites are finally considered as com-
posites composed of the matrix and the penny-shaped 
fillers for applying the modified Eshelby method. The 
thermal conductivities of the laminated composites 
for various filler volume fractions and thermal con-
ductivity ratios predicted by the present model are 
consistent with the results by the conventional ap-
proach combined with the potential theory and elec-
trical analogy. It is proved through the present study 
that the present model can be applied to predict the 
thermal conductivities of the laminated composites. 
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